Enzyme family coherence assessment: validation and prediction
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MOTIVATION:

The sequencing of multiple genomes is currently progressing at a fast pace. Each protein
sequence needs to be functionally annotated in order to acquire a biological context. The
high quality manual annotations made by specialized curators, is unable to keep up with the
rhythm at which new organisms are being sequenced, which has led to the development of
automatic annotation methods. However, these methods are based on existing annotations,
and thus biased toward the best studied and characterized model organisms. Furthermore,
existing annotation errors are further propagated by these methods. This justifies improve-
ment of the automatic methods so that their precision is increased to a more acceptable level.
A current compromise resides in the use of semi-automatic methods, where the automatic
procedures are employed to propose annotations that require validation by specialized cura-
tors. However, any methods capable of reducing human intervention (up to full automation)
without loss of precision are certainly very desirable.

BACKGROUND:

The developments of automatic methods for protein functional annotation aims to accom-
pany the genome sequencing rhythm. As an example, Swissprot database, which contain
only manually annotated sequences, contains 18 times less sequences than TrEMBL, which
houses 6.6 millions sequences, being that the latter are automatically analysed and anno-
tated [1].

Most of the existing methods for automatic protein functional annotation share a first
common step, the identification of homologue sequences, that is, identification of sequences
with a common evolutionary origin [2]. A simple example that uses this approach is GeneQuiz
[3] which annotates proteins by using only the information of the most informative sequence
selected from a set of homologue sequences.

However the use of homologue sequences does not guarantee correct automatic functional
annotation [4] since it generates systematic errors, that are derived from the following biolog-
ical phenomena: gene duplication, evolutionary distance and domain shuffling [5]. The first
two explain why reasonably similar proteins can have different functions, and the domain
shuffling reveals the dynamic of the genome, confirming that homology regions can be only
local.

In order to circumvent these issues, several approaches were developed using not only one
sequence but information from multiple homologue proteins and their respective alignments,
and annotation sharing [6-8]. However the propagation of undetected misannotations in
databases is still an unsolved issue [5]. It was estimated that even in curated processes that
use sequence similarity methodology the annotation error rate can reach 49% [9]. Several
protein databases, such as SYSTERS [10] and ClustR [11] use primarily this type of strategy
in their automatic annotation procedures. However, to achieve a compromise between anno-
tation coverage and precision, semi-automatic processes such as the ones employed on COG
[12], CATH [13] or CAZy[14] exist. These methods typically use automatic procedures that
require verification by specialists. Hence, they are mostly used on specialized databases.

Other automatic methods were developed to face the issue caused by the growing number
of misannotations, these methods try to correct or validate annotations [15, 16]. One of such



methods is CAC [15] that validates predicted annotations by correlating with previously
manually curated annotations. MisPred [16] also does this validation but using a set of
rules based on previous observations of biological knowledge. Beyond annotation validation,
the recent use of ontologies in the annotation process has allowed uniformity and ambiguity
removal from protein annotation [17]. Gene Ontology (GO), is nowadays a standard in the
community and provides a controlled vocabulary to describe genes and attributes of gene
products of any organism. Gene Ontology is composed by three different ontologies that
describe the gene products in terms of biological process, molecular function and cellular
component [18].

OBJECTIVE:

With this work we aim to develop computational methods that calculate the robustness
of functional annotation of protein families. These measures will enable us to identify inco-
herently annotated groups of sequences in order to make them the target of intervention by
expert curators and/or experimental biochemical characterization. Under-annotated fami-
lies will be complemented with annotation identified by new methods of text mining, which
will also be developed. Families that are identified as robust will serve as knowledgebase to
generate an ontology extension for submission to Gene Ontology. With this submission of
new terms to the Gene Ontology we intend to enrich it in the area of Glycobiology, because
there are still not enough GO terms available neither in quantity or specificity to cover most
of the biological processes of this area.

As a case-study we will use the resources of CAZy (www.cazy.org), a source of knowledge
in the area of Glycobiology, which is one of the main databases specialized in families of
structurally-related catalytic and carbohydrate-binding modules (or functional domains) of
enzymes that degrade, modify, or create glycosidic bonds [14].

APPROACH:

We started by performing an exploratory analysis of CAZy public data. Currently it
contains over 140,000 proteins obtained from public databases and through collaborations
with international consortia of genomic annotation, including about 7,000 enzymatic ac-
tivities and adhesion extracted from over 30,000 bibliographical references. It is organized
into 290 protein families covering five classes of enzymatic activities: Glycoside hydrolases
(GH), glycosyltranferases (GT), polysaccaride lyases (PL), carbohydrate esterases (CE) and
carbohydrate-binding modules families (CBM) [14]. To assess the functional coherence of
the CAZy families we measured the intra-family semantic similarity. We used the simGIC
semantic similarity measure [19] on the Uniprot entries of the CAZy families. We used only
the UniProt entries since only these were directly linked to GO term annotations. In fact, we
have seen that on average only 77% of uniprot entries in each CAZy family had GO term an-
notations from the molecular_function ontology. We have plotted (Figure 1) the distribution
of sizes (in number of uniprot entries) of the CAZy families with less than 1000 entries (only
15 families had more than 1000) and we randomly sampled families to represent the five
different enzymatic activities classes at five peaks in the graphic. Their molecular_function
ontology coverage over the number of Uniprot entries per family and over the total number
of all entries per family can be seen in Table 1.
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FIG. 1: CAZy family size distibution. Each bar shows the number of families (frequency) with a
given number of sequences.

Family | uniprot |%GO annot.| %GO annot.||Family | uniprot |%GO annot.| %GO annot.
coverage|over uniprot| over total coverage|over uniprot| over total
CE12 93 100 31 PL1 331 78 7
PL9 95 60 23 GHT7 351 100 38
CBM9 95 100 41 GT25 359 o8 23
GT56 o7 98 34 CE10 378 86 25
GHS84 60 40 12 CE9 976 98 37
PL3 136 99 37 GT35 701 99 33
CE5 150 99 31 GH19 744 94 31
GH92 150 27 8 CE1l 944 o1 18
CBM3 151 100 35 GT9 1042 98 40
GT6 161 100 25 GH1 1146 99 29
CBM50| 347 52 20 CBM48| 1392 96 33

Table 1: Number of Uniprot entries per family, percentage of Uniprot entries in a family anno-
tated with GO molecular_function terms, and ratio of GO molecular_function annotated terms
per total number of family entries.

RESULTS AND DISCUSSION:

The semantic similarity profiles of the sampled CAZy families gave us insight into their
coherence. As expected, all the sampled CBM families (four) showed us varying degrees of
semantic similarity (CBM3 family shown Figure 2a) ). This is not surprising since these
families comprise of members that often associate themselves to other carbo-active catalytic
modules in the same polypeptide and can target different substract forms depending on
different structural characteristics [14]. The most coherent families were shown to be CE12,



GT56, PL3 and GH7 (GT56 and PL3 shown at Figure 2b) and c) respectively), being that
GT56 scored a perfect semantic similarity of 1 for all its pairs of (Uniprot) proteins. This
happens because all of the considered proteins from this family were annotated to the same
high informative term, fucosyltransferase activity. The family PL3 yielded similar results
(Figure 2¢) ) since most of its proteins were annotated with the term pectate lyase activity.
However most of the sampled cases we observed (GH92, GT6, CE5, GT25, PL1, CE9, GT35,
GH19, GT9 and GH1) showed a configuration where two peeks of similarity arose, one at
the far right of the histogram and another one before the 0.5 semantic similarity threshold.
We can see two of these cases at Figure 2d) for family GT9 and Figure 2e) for family CES5.
What happens here is that in the case of family GT9, most of the proteins are annotated with
the term transferase activity while only about half of those are also annotated with a more
specific term transferase activity, transferring glycosyl groups. Again the same behaviour is
observed in family CE5, with most of the terms being annotated with the term hydrolase
activity, and only half of them having also a more specific cutinase activity term annotated
to them.

Family GH84 (Figure 2f) ) as can be seen on Table 1 is an example of where the GO
ontology still offers poor coverage. Only 40% of the Uniprot entries of this family have GO
molecular_function annotations and that covers only 12% of all the entries in the family.
Although there are only 24 proteins in this family that contain GO molecular_function an-
notations, the specificity up to each protein is annotated varies greatly. Hence, on Figure
2f) we can see peeks at five different similarity levels. This, however, does not mean lack
of family coherence but instead it means there is an uneven depth of GO annotation. Even
though GO annotations still lack in specificity, on average they cover 77% of the Uniprot
entries in each family. However, if we consider consider all the entries in each family, and
not just those from Uniprot, our sample data presents a coverage from 7% to 41%, which
gives an average of only 28%. This means there is still a big percentage of data to explore.
Hence in the future we will have to employ ways to extract useful information from the
other non-Uniprot entries. This can be combined with the semantic similarity measures on
a method for the complete assessment of coherence for every CAZy family.
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FIG. 2: Frequency distributions of semantic similarities between pairs of proteins in a CAZy family.
Plots for family a) CBM3, b) GT56, c) PL3, d) GT9, e) CE5 and f) GH84.
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CONCLUSIONS:

So far we have successfully used semantic similarity to identify some coherent protein
families. In the process, we were also able to identify shortcomings in the depth of annotation
of GO annotations for some of the Uniprot proteins in the CAZy families. There is still,
however, more information from over 70% of family entries that can be potentially used
to perform robust coherence assessments. Thus, by now, we have can discover which are
the CAZy families with functional annotation robustness and that enable us to select some
candidate families with members that require deeper ontology annotation. Soon, we will be
applying this method to the complete CAZy family space leading us to the refinement of
this process. We will also start to harvest and assess how to use the information provided by
non-Uniprot entries, and apply text mining techniques, when required, so that all of these
tasks can be effectively and automatically performed over a larger family space.
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